Touching Eden House

A Conversation with Wallflower Architecture + Design: The Magic of Touching Eden House

Touching Eden House is more than just a home. It’s a dream come true—a blend of nature and human genius. We sat down with the architects at Wallflower Architecture + Design to find out the secret behind this amazing project.

 

A collaborative project

Wallflower Architecture + Design describes Touching Eden House as a “haven of wonder”. It’s clear that this retreat is the result of a team effort. The architects emphasize the importance of having a visionary client who shares their passion for excellence.

“It’s rare to have such a complete team for a single-family home,” they explain. “From landscape architects to lighting consultants to interior designers, everyone brought their unique expertise to the table. This level of collaboration is usually reserved for much larger projects.”

The result is a home that feels like a carefully thought-out experience. From the OTIIMA sliding doors that connect indoor and outdoor living to the Gaggenau appliances and Giorgetti furniture that make up the interior, each element adds to the overall feeling of luxury and sophistication.

 

© Finbarr Fallon

The power of light

Light plays a key role in the design of Touching Eden House. The architects explain how they harnessed the sun’s power to create a serene and stimulating space.

“In the tropics, light changes dramatically throughout the day,” they say. “We wanted to capture this sense of movement and transformation in the house. By carefully considering the placement of windows and shading, we created a space that feels connected to nature while offering respite from the intense sunlight.”

The use of biophilic design, which incorporates natural elements such as plants into the architecture, further enhances the sense of calm. It’s a space where you can truly escape the hustle and bustle of urban life.

© Finbarr Fallon

Perhaps his most famous principle, “Less is more,” summarizes Mies’ approach to design: stripping away the unnecessary to reveal the essential. His buildings are characterized by clean lines, open floor plans, and an absence of ornamentation. This philosophy encourages architects to prioritize spatial clarity and material integrity, resulting in modern and enduring structures.

© Tomeu Canyellas

1. Heydar Aliyev Center – Zaha Hadid

1. Heydar Aliyev Center – Zaha Hadid

Connecting people with nature

The Eden House shows that people can live harmoniously with nature even in busy cities. The architects think modern life often isolates us from the natural world, but there’s a growing desire to connect.

“Biophilic design is a key strategy for bringing nature indoors,” they explain. “By incorporating natural materials, plants, and even water features, we can create spaces that promote well-being and reduce stress”.

 

A vision for the future

When asked about the future of architecture, architects are optimistic. They believe technology will be important in creating a more sustainable and equitable world.

“We must use technology to address challenges such as climate change and inequality,” they say. “We can build buildings that benefit the planet and its inhabitants by inventing fresh materials, building techniques, and energy-saving devices.”

The architects want a future where architecture and nature are inseparable. Buildings will be designed to work with the natural environment instead of against it. This vision is inspiring and achievable.

Welcome

You already have an account please? Login

First Name*
Last Name*
Email*
Password*
Password
Country*
Job Title*
Company*
First Name*
Last Name*
Email*
Password*
Password
Country*
Job Title*
Company*
Website*
Years in business*
Message*

Newsletter

OTIIMA - Much more than a window

Subscribe





    Compare products

    Compare products easily by analyzing features and specifications side by side to find the best option for your needs.

    thermal-transmittance

    Thermal Transmittance

    watertightness

    Watertightness

    air-permeability

    Air permeability

    wind-resistance

    Wind resistance

    resistance

    Impact resistance

    insulation

    Sound insulation

    security

    Security

    thermal-transmittance

    Thermal Transmittance

    Uw Ug = 0.7 (38mm)
    Uw Ug = 0.7 (54mm)

    watertightness

    Watertightness

    ISO EN 12208 + ISO EN 1027

    Class 8A

    (450 Pa or 95 km/h)

    air-permeability

    Air permeability

    ISO EN 12207 + ISO en 1026

    Class 3

    (600 Pa or 110 Km/h)

    wind-resistance

    Wind resistance

    ISO EN 12210 + ISO EN 12211

    Class C5

    (2000 Pa or 200 Km/h)

    resistance

    Impact resistance

    ISO EN 12600 + ISO EN 1630

    Class 5

    (in 6 possible classes)

    insulation

    Sound insulation

    ISO EN 10140 + ISO EN 717

    Rw: 38 db (up to)
    security

    Security

    RC2: (WK2) 2

    RC2: (WK2)
    thermal-transmittance

    Thermal Transmittance

    Uw Ug = 1,0 (38mm)
    Uw Ug = 0.5 (54mm)
    Uw Ug = 0.47 (62mm)

    watertightness

    Watertightness

    ISO EN 12208 + ISO EN 1027

    E1200

    (7 classes above 9A) 1

    air-permeability

    Air permeability

    ISO EN 12207 + ISO en 1026

    Class 4

    (600 Pa or 110 Km/h) 1

    wind-resistance

    Wind resistance

    ISO EN 12210 + ISO EN 12211

    Class B5

    (2000 Pa or 200 Km/h) 1

    resistance

    Impact resistance

    ISO EN 12600 + ISO EN 1630

    Class 5 (38mm / 54mm)

    1C1 | 2B2 | 1B1 2 (62mm)

    insulation

    Sound insulation

    ISO EN 10140 + ISO EN 717

    Rw: 42 db (up to) (38mm / 54mm)

    Rw: 44 db (up to) (62mm)

    security

    Security

    ISO EN 1628 + ISO EN 1629 + ISO EN 1630

    RC2: (WK2)

    3

    thermal-transmittance

    Thermal Transmittance

    Uw Ug = 1,0 (38mm)
    Uw Ug = 0.5 (54mm)

    watertightness

    Watertightness

    ISO EN 12208 + ISO EN 1027

    E1200 (54mm)

    (4 classes above 9A) 1

    air-permeability

    Air permeability

    ISO EN 12207 + ISO EN 1026

    Class 4

    (600 Pa or 119 Km/h) 1 2

    wind-resistance

    Wind resistance

    ISO EN 12210 + ISO EN 12211

    Class C5

    (in 6 possible classes) 2

    resistance

    Impact resistance

    ISO EN 12600 + ISO EN 1630

    Class 5

    (2000 Pa or 200 Km/h)

    insulation

    Sound insulation

    ISO EN 10140 + ISO EN 717

    Rw: 42 db (up to)
    security

    Security

    ISO EN 1628 + ISO EN 1629 + ISO EN 1630

    RC2: (WK2)

    3

    thermal-transmittance

    Thermal Transmittance

    Uw Ug = 1.0 (38mm)
    Uw Ug = 0.5 (54mm)

    watertightness

    Watertightness

    ISO EN 12208 + ISO EN 1027

    E1650

    (7 Clases superior a 9A) 1

    air-permeability

    Air permeability

    ISO EN 12207 + ISO EN 1026

    Class 4

    (600 Pa or 110 Km/h) 1

    wind-resistance

    Wind resistance

    ISO EN 12210 + ISO EN 12211

    Class C5

    (2000 Pa or 200 Km/h) 1

    resistance

    Impact resistance

    ISO EN 12600 + ISO EN 1630

    Class 5
    insulation

    Sound insulation

    ISO EN 10140 + ISO EN 717

    Rw: 42 db (up to)
    security

    Security

    ISO EN 1628 + ISO EN 1629 + ISO EN 1630

    RC2: (WK2)

    2